8th Regulating for Decent Work Conference Ensuring decent work in times of uncertainty 10–12 July 2023, ILO Geneva

International Labour Organization

Data Mining and Machine Learning: a cutting-edge technology supporting Labor Inspectorates to address undeclared work

Ada Huibregtse, Ph.D., International Labour Organization Eleni Alogogianni, Hellenic Labour Inspectorate

Employment and Social Affairs Platform (ESAP) 2

- This study was conducted as a part of ESAP 2
- Funded by the European Union
- Implemented by the International Labour Organization
- Western Balkans: <u>Albania</u>, Bosnia and Herzegovina, Kosovo, Montenegro, North Macedonia, Serbia
- Albanian State Labor Inspectorate and Social Services (ASLISS)

ILO and ASLISS: Intersecting Goals and Solution

- ESAP 2 Goal = ASLISS Goal: increase effectiveness in uncovering undeclared work and other labor law violations
- ASLISS proposal: Improve the existing Rules-Based Risk Assessment Tool
- ILO/ESAP2 proposal: Replace the existing one with a Risk Assessment System utilizing Data Mining and Machine Learning

Theory

DM&ML has the capacity to:

- Classify (patterns of compliance/non-compliance) and analyze large amounts of information about complex issues
- With little to no induced human bias given that data is of high quality
- Increase the accuracy of predictions of who, how frequently and when an employer is engaged in UDW
- Generate and update knowledge about UDW

Theory

- When accurate predictions are incorporated into inspection planning, more inspection visits will identify cases of UDW than when they are not incorporated.
- Increased proportion of inspection visits identifying UDW will increase the overall institutional effectiveness.
- Increased inspection efficiency the same input in terms of human, operation and financial resources is translated into more uncovered cases of UDW

Theory

Assuming that labor inspection officials are interested in improving their institutions' performances, they will be willing to adopt DM&ML systems and use information and knowledge generated through these systems to identify actors, behaviors, and actions that challenge or support a labor inspectorates' probability of achieving their objectives and fulfilling their missions.

Hypothesis

If ASLISS replaces the current risk analysis tool, in which variables are assigned weights based on ASLISS officials' understanding of undeclared work, with a DM and ML risk assessment system (RAS) where human judgements and biases are kept to a minimum, the RAS will generate more accurate predictions about employers likely to engage in undeclared work.

A Machine Learning application study using real-life inspection data of the Albanian Labour Inspectorate

The Business Environment

- The Albanian State Labor Inspectorate and Social Services (ASLISS)
 - Performs inspections on Labor Relations and Occupational Safety & Health
 - Consists of its Central Offices at Tirana and 14 local departments countrywide
 - Employs 117 labor inspectors
- The labor market
 - Consists of 123.2K active businesses & 177.5K company branches
 - Includes around 553K registered employees
- Hence, one inspector corresponds to:
 - 1.5K company branches
 - 4.7K employees

The ASLISS Information System

- A Case Management System, the "Matrix of Penalties" (MOP)
- Installed in 2018, used by labor inspectors to insert and manage labor inspection cases
 - Contains inspection data for the period 2019 2022
 - Biannually, a file from the Tax Authority is uploaded with the companies' data
- Each inspection case is linked with a company contained in the Tax Authority file
- Upon inspection case completion, the inspector fills in all the related inspection findings and results

Data Sources

From the **MOP**:

- Inspection cases performed in the years 2021 2022
- Data drawn in the form of statistical reports

From the Tax Authority:

- The active-companies file (end of 2022)
- Inspection data from 2019 2020 were not used due to:
 - Quality issues: missing data, wrong data
 - inspections not correctly linked with companies
 - The focus of the 2020 inspections:

- Advising companies for labor law provisions related to the Covid-19 pandemic

Data Preparation

- Integration of the inspection cases with company data (from the Tax Authority file)
- Data understanding and attributes selection & creation as per the study goals
- Data selection: Based on the inspection date (2021 2022)
- Data cleaning: Inspection cases with null values in selected attributes were omitted
- Data anonymization: All data attributes identifying companies, inspectors and employees were discarded
 - Data discretization & categorization of the attribute values: For improved understandability and transparency

Dataset Attributes

> 8 categorical attributes & 12,660 inspection cases

Attributes	Values	Ratio %	Attributes	Values	Ratio %
	RA_PLANNED	80.94		LIM_LIAB	66.86
	OTHER_INSP_TYPE	19.06	LEGAL FORM	PHYS PER	29.03
	PRODUCTION	27.64		OTHER LF	4.12
	SERVICES	29.84		LARGE	81.41
BUSINESS SECTOR	TRADE	24.05	COMPANY TYPE	SMALL NO VAT	14.45
	CONSTRUCTION	16.86		SMALL VAT OTHER	4 14
	TRANSPORT	1.61			18 30
	EMPL_1_10	45.24			51 55
EMPLOYEES	EMPL_11_50	33.67	REGION		10.53
	EMPL_51_200	14.53		SUUTHEAST_REGION	10.57
	EMPL_OVER_200	5.47		NORTH_REGION	13.58
	EMPL NOT DEC	1.10		UDW	5.81
	REG LESS 5	16.03		GREY	15.46
COMPANY	REG 5 10	30.97	RESULT	UDW & GREY	2.54
REGISTRATION	REG 10 20	35.49		OTHER_VIOL	63.23
	REG_MORE_20	17.51		NO_VIOL	12.95

Datasets Creation for Targeted Predictive Modeling

To enhance the machine-learning process:

- We create different and focused datasets based on the target violations, thus:
 - We transform a multi-class dataset to several binary ones
 - We eliminate irrelevant to the target violation data instances
 - We enable the creation of different models for targeted predictive modeling

In this study, we created three focused datasets:

	UDW		GREY		UDW-GREY	
	YES	NO	YES	NO	YES	NO
Total #	1058	1640	2279	1640	3015	1640
Ratio %	39.21	60.79	58.15	41.85	64.77	35.23

Predictive Modeling

- We employ Associative Classification (AC) to create predictive models
- It is an advanced ML technique that combines Association Rule Mining (ARM) and Classification. It proves to offer:
 - Increased predictive accuracy compared to other DM and ML methods
 - Interpretability of the results:
 - Improving the inspectors domain knowledge
 - Enhancing the inspectors trust in the models' outputs
 - It produces Class Association Rules (CARs) of the form *if-then*
- Training & testing is based on the Stratified 10-fold Cross Validation method
- At the end of the process, classification results for all data instances are collected and placed in the Confusion Matrix

Data Engineering for Enhanced Prediction of Violations

Elimination of the negatives that fall on positives in the training set:

- Applied when:
 - There is a class imbalance in the dataset
 - The cost of misclassifying positives is much higher than the cost of misclassifying negatives
- To enhance the identification of the patterns related to the
 - positive class
 - To promote the prediction to the positive class

Evaluation Metrics

Evaluation based on the Confusion Matrix

- TP & TN: Cases classified correctly
- FP & FN: Cases classified wrongly
- Evaluation metrics:
- Accuracy (Acc) = (TP + TN) / (TP + FN + FP + TN)

The ratio of the correct classifications

• Error Rate (Err) = (FP + FN) / (TP + FN + FP + TN)

The complementary value of Accuracy – The ratio of misclassifications

• Precision (p) = TP / (TP + FP) – model's exactness

The ratio of Positives correctly predicted to all predicted Positives

ACTUAL	PREDICTED CLASS				
CLASS	YES	NO			
YES	TP	FN			
NO	FP	TN			

 Recall (r) = TP / (TP + FN) = TP / P - model's completeness

The ratio of Positives correctly predicted to all actual Positives

• **F1-score** = (2 * p * r) / (p + r)

The harmonic mean of Precision and Recall

• Specificity (s) = TN / (FP + TN) = TN / N

The ratio of True Negatives to all actual Negatives

Prediction Performance Results

4 models are constructed & evaluated for their prediction performance

Prediction Performance Metrics of the Models							
Model	Acc	Err	Precision	Recall	F1-score	Specificity	
UDW	70.64	29.36	63.63	58.7	61.07	78.35	
UDW (no overlaps)	62.19	37.81	51.11	82.42	63.09	49.15	
GREY	64	36	65.63	79.95	72.09	41.83	
UDW_GREY	66.23	33.77	69.31	85.9	76.72	30.06	

The UDW model proves highly successful (Acc):

70.64% success >> 39.21% of the UDW dataset (current rate)

- The UDW-no-overlaps model identifies more than 82% of the UDW cases
- ► The GREY and UDW_GREY models exhibit very high Recall but low Specificity: they mispredict several negatives as positives → they may trigger unnecessary inspections

More negative cases should be included in the training data to help the models learn better

Models Interpretability

- Descriptive feature values understandable to the domain users
- The use of an interpretable ML technique, such as AC

> The models offer interpretable outputs:

- They explain why a company should be inspected → Increasing the users' confidence in following the models' suggestions
- They reveal the patterns linked with the different violations → Enhancing the users' domain knowledge

Findings

Some of the CARs produced by the **UDW classifier**:

Attribute values	UDW
SERVICES, EMPL_1_10, REG_5_10, SMALL_NO_VAT, SOUTHEAST_REGION	YES
RA_PLANNED, SERVICES, REG_5_10, PHYS_PER, NORTH_REGION	YES
RA_PLANNED, EMPL_OVER_200, REG_10_20	NO
TRADE, REG_MORE_20, CENTRAL_REGION	NO

- Inspect employers in the services sector, with up to 10 employees, in operation between 5 to 10 years, with turn over small enough not to pay VAT, in the south-east region.
- Do not inspect employers in the trade sector, with more than
 20 years of existence, in the central region.

Findings

Some of the CARs produced by the **Grey Work classifier**:

Attribute values	UDW
TRADE, EMPL_1_10, REG_10_20, SOUTHEAST_REGION	YES
PRODUCTION, EMPL_11_50, REG_10_20, LIM_LIAB, CENTRAL_REGION	YES
RA_PLANNED, EMPL_1_10, LIM_LIAB, LARGE, NORTH_REGION	NO
TRADE, EMPL_1_10, SMALL_NO_VAT	NO

- Inspect employers in the trade sector, with up to 10 workers, in operation between 10 to 20 years, in the south-east region.
- Do not inspect employers in the trade sector, with up to 10 workers, with limited liability status in the north region.

Findings

- Some aspects of the current ASLISS inspection targeting prove wrong:
 - Planned inspections are less successful than other inspection types, yet 8/10 of the inspections are still planned by the current Risk Analysis tool

Type of inspection	Revealing UDW	Revealing GREY	ASLISS's inspections
PLANNED	7.82%	16.70%	80.94%
OTHER_INSP_TYPE	10.61%	23.50%	19.06%

Findings

• The ratio of inspections per business size does not follow the labor market businesses size rate, nor the percentage of revealed undeclared work per business size:

Business size (As per the number of employees)	Labor market (INSTAT 2021)	Ratio of revealed UDW	Ratio of revealed GREY	ASLISS's inspections
1 – 10 employees	93%	69.09%	43.66%	45.24%
11 – 50 employees	5.39%	22.21%	33.13%	34.33%
Over 200 employees	< 0.5%	2.08%	1.23%	5.47%

Findings

- Inspections triggered as result of any other reason except planning are better predictors of incidence of undeclared or GREY work
 - Micro- to small-size enterprises more likely to engage in UDW, while middle-size enterprises in GREY work
 - UDW and GREY work are more frequently uncovered in the Southeast
 - (region less compliant or labor inspectors more rigorous?)
- UDW is more frequently uncovered in the services sector, while GREY work in the trade and production ones

Conclusions

- > DM and ML can contribute in:
 - Improving the Labor Inspectorates' effectiveness and efficiency
 - Faster and smarter decision-making on resources allocation
 - Strategic planning through accumulation and update of knowledge
 - Further improvement in predicting violations can be achieved:
 - With more inspection data for training the models
 - By using data engineering to cure issues in data (imbalance, overlaps)
 - By performing some random inspections to feed the models with new labor market trends

8th Regulating for Decent Work Conference Ensuring decent work in times of uncertainty 10–12 July 2023, ILO Geneva

International Labour Organization

Thank you for your attention!

Questions?

Ada Huibregtse, Ph.D., International Labour Organization Eleni Alogogianni, Hellenic Labour Inspectorate